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Abstract
The slow magnetization dynamics in magnetic thin films has been investigated in this paper.
It is shown that the experimental results of the time-dependent magnetization can be well
described by the extended exponential function, exp(−(t/τ)β) with β > 0, in a number of thin
film systems. By investigating the characteristics of the magnetization process and examining
the limitations of the present models, an explanation is provided based on the structural and
dynamical properties of the magnetic domains. Meanwhile, some questions have been clarified
in the study towards understanding the magnetization relaxation phenomenon in thin films.

1. Introduction

Magnetization processes in thin films are of great importance
in information storage technologies such as magnetic recording
and magneto-optical recording. Among all the magnetization
processes, the magnetization reversal and relaxation in
continuous thin film structures are of prime interest. A
full understanding of the magnetization dynamics is crucial
for applications in terms of media writeability and data
retention. In addition, the investigation will help understand
the underlying mechanisms. One may find reference [1] a
particularly interesting and relevant reference on the subject
of this paper.

Magnetization relaxation has been observed and investi-
gated for several decades [2]. Research effort on magnetiza-
tion relaxation in thin films has become intensive since 1990
when advanced experimental techniques and methods became
available and capable for studying magnetic domain patterns
and its time dependence [1] and new magnetic thin film ma-
terials were synthesized and fabricated. Through the numer-
ous experimental studies that have been carried out, several is-
sues remain in the interpretation of the results. First, there are
several expressions to characterize the time dependence of the
magnetization relaxation such as the Richter-type logarithmic
relaxation and the stretched exponential relaxation. However,
magnetization relaxations are characterized differently in sim-
ilar types of materials, which do not have apparently different
relaxation mechanisms. Second, the time dependence that fits

well to a stretched exponential relaxation is occasionally ana-
lyzed and discussed by a normal exponential Debye relaxation.
In this case, the energetic landscape of the magnetic system
is oversimplified. Third, the characterization of the time de-
pendence of magnetization relaxation and reversal in magnetic
thin films has been merely qualitative based on the Fatuzzo
model [1, 24]. In this paper, we start with a review and dis-
cussion of the existing expressions that have been widely used
for describing magnetization relaxation. The experimental re-
sults of the time dependence of the magnetization reversal and
relaxation in thin films are then revisited and reanalyzed. This
work not only clarifies some key points in the understanding of
magnetization relaxation in thin film structures, but also ren-
ders some interesting and useful results and sheds light on our
future study that is related to the decay of magnetic recording
media and other topics.

2. Review and discussion

Magnetic relaxation is a rather complicated phenomenon.
Many models have been proposed based on phenomenological
studies and first principles. We shall start with probably the
best-known logarithmic relaxation in the magnetics research
literature. The classification of slow magnetic relaxations will
follow, which is mainly based on the time dependence of
magnetization. A brief summary is provided at the end of this
section.
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2.1. Logarithmic relaxation

Consider a single magnetic Stoner–Wohlfarth particle. An
external magnetic field opposite to the initial magnetization
direction would cause the particle to overcome the energy
barrier and reverse its field direction for the minimum energy
state. The time dependence of the magnetization is written as

M(t) = M0 (2B(t) − 1) (1)

and B(t) = exp(−t/τ) describes the simple Debye relaxation
that involves just a single energy barrier. At finite temperatures,
the time constant τ for the magnetization reversal follows the
Arrhenius–Néel law [3]:

τ = ν−1
0 exp(�E/kBT ), (2)

where the attempt frequency ν0 in the range of 109–1011 Hz is
related to the spin–lattice interaction. �E is the energy barrier
that is a function of the applied field and kBT is the thermal
activation energy.

In an assembly of non-interacting magnetic particles, the
time-dependent magnetization is determined by the statistical
reversals of individual particles towards thermal equilibrium.
Therefore, the magnetic relaxation by the system from
measurement is

B(t) =
∫ ∞

0
e−t/τ(y)g(y) dy. (3)

Here y denotes the energy barrier that determines the time
constant of reversal, τ (y). g(y) is the distribution function
of energy barriers in the magnetic particle system. Under
some strict and particular assumptions [4]1, the magnetization
relaxation is obtained to be

M(t) ∼= M0 − S(H, T ) ln(t/t0), (4)

where S(H, T ) is known as the magnetic viscosity coefficient
and is used to characterize the magnetic relaxation in the
system. For a perpendicular recording media in the presence
of magnetic fields [5], the magnetic decay can be written as

M(t) ∼= M0 − S(H, T ) ln(1 + t/t0). (5)

Then, both S(H, T ) and t0 are functions of the applied
field and temperature.

Equation (4) or equation (5) have long been used
to characterize magnetic relaxation in granular magnetic
recording thin film media and ferromagnetic nanoparticle
assemblies [6]. However, one can quickly notice that
equation (4) diverges at both ends, t → 0 and t → ∞. In
fact, equation (4) is argued [4] (see footnote 1) to be valid in a
limited range τ1 � t � τ2. For t � τ1, the magnetization
decay �M(t) is a linear function of time. For t � τ2,
�M(t) ∝ t−1e−t/τ2 . The two time parameters, τ1 and τ2,
are associated with the distribution function of the system.
Because the assumed distribution is not realistic, the physical
meaning of the time parameters remains unclear.

1 In this book, the change of magnetization over time is described as∫ ∞
0 e−t/τ g(τ )/τ dτ , where the distribution function g(τ ) is assumed constant

in a time period (τ1 � τ � τ2) and zero outside.

2.2. Kohlrausch–Williams–Watts relaxation

Chantrell et al [7] reconsidered magnetic relaxation in
particulate and thin film materials based on the reversal
mechanism and the formulation of equation (3). Energy
barriers were assumed to have a lognormal distribution for
the non-interacting particles and grains. It can be seen that
magnetization relaxation deviates remarkably from logarithmic
behavior when the energy barrier distribution becomes narrow.
Furthermore, we find that, for all the distribution widths shown
in [7], the time-dependent magnetization can be well fitted to
the stretched exponential function

B(t) = exp
(−(t/τ)β

)
, 0 < β < 1, (6)

in a long time span. The relaxation time constant τ is sensitive
to the energy barrier while the exponent β changes little.

The relaxation described by equation (6) is also termed
Kohlrausch–Williams–Watts (KWW) relaxation. It has been
broadly observed in a variety of complex materials and
systems such as supercooled liquids, spin glasses, amorphous
solids, molecular systems, glassy soft matter, etc [8–12].
Although it is a universal phenomenon, understanding the
relaxation dynamics has relied on the distinct characteristics
and properties of the systems. Nevertheless, the stretched
exponential time dependence is believed to appear in any
strongly interacting disordered system. The KWW relaxation
(0 < β < 1) is slower than the conventional Debye relaxation
(β = 1) since the system goes through metastable states during
the process towards the ultimate thermal equilibrium.

The stretched exponential relaxation has been observed
and reported in a number of spin-glass and cluster spin-
glass systems such as Au:Mn [13], γ -FeNiCr alloys [14],
polycrystalline RuSr2Gd1.5Ce0.5Cu2O10−δ [15] and amorphous
Fe2O3 [16] by measuring the thermoremanent magnetization.
Simulations have been carried out by Ogielski [9] to
understand the relaxation dynamics in Ising spin glasses,
followed by some phenomenological models [17–19]. The
slow relaxation dynamics in spin glasses is much different
from the relaxation dynamics in magnetic thin films. We shall
return to the magnetic thin films that are the focus of this study.
The treatment above of thin films as non-interacting grains is
fairly crude and unrealistic. By including the dipole–dipole
interaction in thin films with strong perpendicular anisotropy
which resembles a 2D Ising spin system, Lottis et al [20]
simulated the magnetization dynamics under a mean-field
approximation and concluded that the relaxation can be better
described by a stretched exponential rather than a logarithmic
function. However, the magnetization structure of the thin film
and its temporal evolution were not provided. We will come
back to this point later.

2.3. Kolmogorov–Avrami–Fatuzzo relaxation

There exists a fundamental difference between the aforemen-
tioned models for spin glasses and the magnetic thin film sys-
tems that are the main subject of this study. In these models,
some clusters, droplets or domains are presumed formed at the
very beginning of the relaxation process. The magnetization
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relaxation is the total effect of relaxing clusters or fluctuating
droplets, etc [17–19], as the system approaches thermal equi-
librium. In the thin films we consider, the magnetization is
initially saturated in an easy axis direction. Then an exter-
nal magnetic field is applied in the opposite direction. As a
consequence, the magnetization relaxes and reverses field di-
rection. For imperfect films with defects such as voids and
pinning sites, the Stoner–Wohlfarth-like coherent reversal is
not likely since the process is not favored energetically. The
real picture is that first some reversed spins or grains appear
in the films. Via the short-ranged exchange coupling, the adja-
cent spins or grains are more likely to reverse than the others.
Therefore, magnetic domains are formed and grow over time
from the reversed spins or grains, which are considered as nu-
clei. The magnetization reversal is achieved when the domains
expand to cover the whole film. This so-called Kolmogorov–
Avrami (KA) model was originally used to describe crystal
growth [21, 22]. It has also been successfully applied to fer-
roelectric domain reversals [23].

Under the framework of the KA model, the time
dependence of magnetization reversal is expressed as

B(t) = exp

(
−

∫ t

0
n(τ )s(t − τ ) dτ

)
. (7)

n(τ ) is the nucleation rate at time τ . s(t − τ ) is the domain
expanding from a nucleus, which appears at time τ , for a given
time t . The change of magnetization at time t is then the sum
of the growth of the reversed domains from the nucleation that
occurs from the beginning. We let the domain growth be a
power-law function

s(t − τ ) = c(t − τ )γ , (8)

where c is the domain growth speed and γ > 0, and consider
two limiting cases. Supposing nucleation occurs at τ = 0
immediately after the reverse field is applied, i.e. n(τ ) = δ(τ ):

B(t) = exp(−ctγ ). (9)

When nuclei appear at a constant rate, i.e. n(τ ) = n0, the
magnetization reversal is

B(t) = exp

(
− cn0

γ + 1
tγ+1

)
. (10)

Both equations look similar to that of the KWW relaxation
but, in the second case, the exponent, γ + 1, is known for sure
to be greater than one.

Fatuzzo [24] has elaborated the thin film relaxation
associated with nucleation and domain growth based on the KA
model with the assumptions that the nucleation rate decreases
exponentially in time:

n(t) = exp(−Rt), (11)

and circular domains grow with a speed v:

s(t − τ ) = πv2(t − τ )2. (12)

Figure 1. Equation (13) represented by the open dots fitted by
compressed exponential functions for some typical cases, k = 0.01,
10 and 10 000. Time t is normalized to the characteristic time
constant t1/2, where B(t) reduces to 1/2.

Thus, the relaxation (reversal) is obtained2 as

B(t ′) = exp
(−k2(2 − 2(t ′ + k−1) + (t ′ + k−1)2

− 2e−t ′
(1 − k−1)) + (1 − t ′)

)
, (13)

where t ′ = Rt and the parameter k is

k = v/Rrc . (14)

Here rc is the radius of the nuclei.
The Fatuzzo model was originally intended to interpret the

relaxation in ferroelectrics. It was borrowed from magnetic
thin films [25] and has since been widely used [1]. However,
the study based on the model has been qualitative partly
because of the complexity of equation (13). We notice that the
magnetization reversal as a function of t ′ is solely determined
by the parameter k. Furthermore, the time dependence
described by equation (13) can be approximated by

B(t ′) = exp
(−(t ′/τ(k))β(k)

)
,

or
B(t) = exp

(−(Rt/τ(k))β(k)
)
, (15)

in a significantly long time range. τ (k) and β(k) are only
dependent on k. Figure 1 shows excellent consistency between
equations (13) and (15) for several typical k values. This
transformation technique has been used by Orihara et al
in their study of ferroelectrics [23]. It not only facilitates
understanding of the experimental data, as will be seen in the
next section, but also reveals some important characteristics of
the relaxation.

The relaxation is characterized by a time constant, t1/2,
at which the magnetization becomes zero and B(t) = 1/2.

2 Equation (7) was considered to be part of the reversal arising from domain
expansion. Fatuzzo had an additional term, equation (7) in [24], to account for
that of the nuclei in deriving equation (13).
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Figure 2. Exponent β and time constant t1/2 as functions of k. The
dotted line represents equation (20).

Because of the property of equation (13), t1/2 can be written as
t1/2 = h(k)/R. Specifically, from equation (15),

t1/2 = (ln 2)1/β(k)τ (k)/R. (16)

For the limiting case that the nuclei do not grow, i.e.
k → 0:

B(t) = exp(−Rt), (17)

and
t1/2 = ln 2/R. (18)

For the other limiting case when domains grow extremely
fast, i.e. k → ∞:

B(t) = exp
(−k2 R3t3/3

)
, (19)

and
t1/2 = (3 ln 2)1/3/Rk2/3. (20)

Thus, β(k) = 3 and this is equation (10) with γ = 2
for the growth of circular domains, since the domains grow so
fast that the change of nucleation rate over time is negligible.
Figure 2 shows the exponent, β , and the time constant, t1/2, as
functions of k. β increases gradually from 1 to 3 when k goes
from 0 to +∞. t1/2 is close to ln 2/R for low k and follows
equation (20) for high k. The characteristics of nucleation and
domain growth can be readily obtained by fitting experimental
data to equation (15) and then converting the fitting values for
β and t1/2 to R and k from this figure.

2.4. Power-law relaxation

Another class of magnetization relaxation is with the power-
law time dependence

M(t) = M0t−ζ , ζ > 0. (21)

This has been observed in spin glasses such as the γ -
FeNiCr alloys [14]. This behavior can be understood in the

context of the flipping of spin clusters [26]. Recently, Monte
Carlo simulations were carried out to study the magnetic
relaxation in single-domain ferromagnetic nanoparticles and
showed that for all the particle densities the magnetization
approaches a finite remanent value slowly by a power law [27].
Dispersivity and dipolar interaction of the nanoparticles are
found to play significant roles in the slow relaxation.

To summarize the section, several typical kinds of
magnetic relaxation behavior have been reviewed. First,
one should be careful when trying to fit experimental
measurements to any of the above functions that all describe a
monotonic magnetization decay. In particular, the logarithmic
relaxation is valid in a limited range based on the property of
the function itself and the strict assumption from which it is
derived. Its popularity in magnetization decay lies partially in
the history, that it was the very first one used to describe the
decay phenomenon in magnetics [2]. Similarly, the power law
is not suitable for the study where we investigate the process of
magnetization relaxation and reversal in thin films from +M0

and −M0. Therefore, an ‘extended’ exponential function:

B(t) = exp
(−(t/τ)β

)
, (22)

is chosen for the purpose. Note that 0 < β < 1 describes
the stretched exponential relaxation, i.e. the Kohlrausch–
Williams–Watts relaxation and β = 1 is the conventional
Debye relaxation. 1 < β � 3 is the regime for the Fatuzzo
model and then equation (22) is a compressed exponential
function. This classification of magnetization relaxation
seems too crude and might be inappropriate without knowing
the mechanisms and dynamics. It will be clarified with
experimental data in the next section. Another clarification
is that the slow relaxation refers to timescales far longer than
10−9–10−11 s for spin–lattice interactions and 10−11–10−13 s
for spin–spin interactions. As will be shown, the measurements
we considered were done in the time range of 10−2–104 s.
The dynamics within 10−2 s of the onset of the magnetization
process were not detected due to the measurement capability.
Associated mechanisms will not be discussed.

3. Results and analysis

3.1. Extended exponential relaxation

Rare earth–transition metal (RE–TM) alloy thin films with
perpendicular anisotropy [25] were the first systems used for
the study of slow magnetization reversal and relaxation. Since
then slow magnetization dynamics has been investigated in
many other thin films [28–41], multi-domain particles [42],
and 1D magnetic nanowires [43, 44] and similar behavior has
been observed. Figure 3 shows the magnetization change
versus time for a GdTbFe sample in [25]. It fits excellently
to a compressed exponential decay with β = 1.63, which
corresponds to k = 4.8, referring to figure 2. It is different
from the value, k = 1, reported in [19], where the estimate
was made in the limit, Rt � 1. Before proceeding to the
following analysis and discussion, it is necessary to point out
that Wernsdorfer et al [42, 43] have applied the extended
exponential function to characterize magnetization reversal in
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Figure 3. Experimental data taken from [25] fitted to equation (22).
Time t is normalized to t1/2. Note the data points are combined with
the measurements at different magnetic fields.

magnetic particles and nanowires. In both kinds of magnetic
structures, the exponent β can be either less than or greater
than unity. In particular, the magnetization switching in the Co
particles was concluded to be associated with the domain wall
nucleation and annihilation processes in the particles [42]. In
this paper, we will limit our discussion to ferromagnetic thin
films.

One of the important findings in [25] is the field
dependence of the magnetization relaxation. It is easy to
understand that the smaller the reverse magnetic field, the
slower the magnetization reversal and relaxation. However,
when normalized to the time constant t1/2, the magnetization
relaxation fits in a unique curve shown by figure 3 for all the
reverse fields. In other words, the exponent β is independent
of the reverse field strength. This phenomenon has also been
reported in other thin films as well [28, 34, 41]. We know from
the previous analysis that β is a monotonic function of k (see
equation (15) and figure 2). k is then independent of the applied
field.

Figure 4 shows some of the relaxation data collected
from several magnetic thin films. An exponential relationship
between the time constant t1/2 and the applied reverse field H
can be established. According to equation (16) and the field-
independent k, it suggests that the nucleation rate is related to
the field by

R = R0 exp (α(H − HN)) , (23)

where R0 is the nucleation rate at a reverse field of HN . R0 and
HN cannot be determined independently in data fitting. In [25]
where the nucleation is believed to be thermally activated, the
parameter α is written as α = 2MsVN/kBT , where Ms and VN

are the magnetization and the effective activation volume of the
nucleus.

According to the Fatuzzo model, we know from
equation (14) that the domain growth v = krc R. The
nucleation radius rc is associated with the intrinsic defects of
the films and then should be independent of the external field.
When domain growth speed, similar to the nucleation rate, is

Figure 4. Time constant t1/2 as a function of time in the presence of
reverse magnetic fields. Data is taken from [25] (•) for the sample
GdTbFe; [28] (	
) for sample I of 5 ML Au/Co/Au and (�) for
sample II of 5.5 ML Au/Co/Au; [30] (�) for the 485 Å TbFeCo film
and (+) for the 1550 Å TbFeCo film; [31] ( ) for an Au/Co/Au
sandwich film; [32] (◦) for an Au/Co(3 ML)/Au sample and (�) for
an Au/Co(5 ML)/Au sample; and [36] (♦) for an Au/Co(10 Å)/Au
sample.

written as [25]

v = v0 exp
(
α′(H − HD)

)
, (24)

where α′ = 2MsVD/kBT , we come to a strong conclusion
that the domain growth speed and the nucleation rate have
the same field dependence, i.e. α′ = α. It implies that the
nucleation and domain growth arise from the same mechanism
and it might be true that at relatively low fields the domains
grow by pushing the domain wall through the inhomogeneities
or defects in the films [45, 33]. Nevertheless, it looks odd
since α′ = α means that the activation volume of nuclei VN

and the activation volume for domain wall motion VD should
be equal. At higher fields in the viscous regime, domains
grow at a speed proportional to the field strength. The field
dependence of domain growth also relies on film quality.
In nearly homogeneous Ising films the speed of the domain
wall motion is [46] measured to be v ∝ exp(ε/H μ), where
μ = 1/4, and understood by creep theory. Mangin et al
[41] found that μ was larger than unity, e.g. 3/2 or higher,
at low temperatures in their GdFe/TdFe samples where the
GdFe domain walls propagated in the film plane through the
energy barriers, including those arising from the coupling with
the TdFe layer.

Table 1 summarizes the relevant properties of the magnetic
thin films and the slow magnetization relaxation found from
the films. Film material ranges from TM metals, RE–TM
alloys, to noble metal–TM alloys in structures of single layer
films, bilayer films, sandwich films and multilayers. The
films were prepared by a variety of deposition methods and
the magnetic films can be amorphous, granular, textured or
epitaxial. The magnetic layer thickness ranges from 2 Å to
more than 1000 Å. Except for the last two in the table,
Ag/Fe/Ag sandwiches and Co/Cu bilayer films, all the films
show magnetization perpendicular to the film sustained by the
perpendicular magnetic anisotropy (PMA). The values quoted
in the table for coercivity for reference were obtained from
hysteresis loop measurements that were usually completed in
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Table 1. Exponent β and coefficient α extracted from the
magnetization relaxation experiments conducted and reported on a
number of magnetic thin films. The table also shows the
measurement temperature T , thickness of a single magnetic layer tFM

and coercivity Hc for reference. RT stands for room temperature and
ML for monolayer.

Material T tFM Hc (Oe) b a (Oe−1) Ref.

GdTbFe RT ∼200 A 640 1.63 0.022 [25]
TbFeCo RT 485 A ∼8800 0.59 0.012 [30]

1550 A ∼156 00 0.26 0.011
GdFe/TbFe/
GdFe

4 K 1000 A ∼45 1.76 [41]

CoPt RT 100 A ∼1000 2.01 [33]
300 A ∼2250 1.09

Au/Co/Au RT 5.0 ML 510 0.39 0.032 [28]
5.5 ML 450 3.36 0.057

Au/Co/Au RT 8.0 A 770 1.92 0.016 [31]
Au/Co/Au RT 3 ML ∼1000 2.13 0.013 [32]

5 ML ∼500 1.69 0.064
7 ML ∼400 0.16

Au/Co/Au RT 10.0 A ∼700 0.53 0.048 [36]
Fe/Cu 120 K 3 ML ∼30 1.04 0.356 [40]

270 K 0.44 1.415
[Fe/Dy]m RT 5.6 A ∼4300 2.08 [29]

8.1 A ∼3900 0.36
[Co/Pd]10 RT 2.0 A 1200 1.91 [34]

3.0 A 600 1.35
4.0 A 400 0.72

[Co/Pd]5 RT 2.5 A 149 0.111 [37]
[Co/Pd]10 368 0.063
[Co/Pd]15 916 0.030
[Co/Pt]9 RT 3.6 A 820 1.32 [39]
Ag/Fe/Ag RT 10 ML 3 0.35 [35]
Co/Cu RT 30 ML ∼70 0.33 [38]

less than several seconds. We find that the magnetization
reversal and relaxation in these films can be fitted to the
extended exponential function, equation (22), fairly well. The
exponent β varies in the range from 0.16 to 3.36. The
coefficient α for equation (23) is commonly below 0.12 Oe−1,
except for that measured at low temperatures on the Fe/Cu
films [40] with a low coercivity around 30 Oe.

It can be seen from the table that generally the exponent β

decreases with increasing magnetic layer thickness in the same
thin film system. The magnetization relaxation in [Co/Pd]
multilayers is redrawn in figures 5(a)–(c) and β is shown by
figure 5(d) to change from 1.91 to 0.72 with the Co sublayer
thickness. Coercivity may be lower for films with a thicker
magnetic layer, which agrees with the theoretical modeling
and experimental observation [45] that the activation energy
of domain wall motion decreases with increasing magnetic
layer thickness. In addition, there exists a correlation between
the coercivity and the coefficient α. The sensitivity of the
nucleation rate and domain growth speed on the magnetic
reversal field appears to be high in low coercivity films.

3.2. Analysis and discussion

In the Fatuzzo model, the magnetization reversal and relaxation
is described by a compressed exponential function (1 � β �
3). In the case when the nucleation dominates in the reversal
process, i.e. k � 1, the relaxation is the normal exponential

function (β = 1). The fact that the observed slow relaxation
can be either stretched exponential (β < 1) or compressed
exponential (β > 1) behavior indicates that the model is no
longer complete in describing this magnetization dynamics.
We shall carefully examine the two assumptions, nucleation
rate and domain structure/expansion, on which the model is
based.

First, the exponential time dependence of the nucleation
rate, equation (11), has not been confirmed experimentally. As
mentioned in the previous section, the magnetization relaxation
of dispersive non-interacting ferromagnetic nanoparticles
could follow a stretched exponential. It implies that the
nucleation would be similarly a non-exponential function
of time as well. It is generally believed that nucleation
is strongly associated with the defects in the films.
Nevertheless, its properties, including time dependence,
are yet to be characterized until the mechanism is well
understood. The previous study [28–40] just simply related the
stretched exponential decay (β < 1) to nucleation-dominated
magnetization relaxation. However, an explanation is
needed for understanding the thickness dependence, when
the magnetization relaxation crosses over from compressed
exponential behavior to stretched exponential behavior with
increasing magnetic layer thickness.

Second, circular domains are assumed in the Fatuzzo
model. In fact, it is not true in inhomogeneous films.
Magnetic domains have been observed to grow and evolve in a
dendritic structure [34, 45, 48] and can be generated from the
random field Ising model [49] for perpendicularly magnetized
films. Furthermore, the dependence of the domain structure
on the thin film thickness is evident [34]. In the general
case, the domain and domain wall/boundary are characterized
differently [42, 50] with their own fractal dimensionalities.
Since domain growth relies on the local characteristics and
property of the film at the domain boundary, the specific
expression of equation (12) is no longer valid. We should go
back to the generic equation (8), where both the domain growth
speed c and the index γ are variables of the magnetization
dynamics.

Now that the index γ is related to the domain structure,
it is completely determined by the magnetic film structural
quality such as the morphology and imperfections. It is known
that defects play a critical and fundamental role in domain
structure. Defects are more likely to be located at magnetic
film surfaces as forms of loose spins due to film roughness
and reduced surface anisotropy [47]. They can also be formed
as voids and pinning sites in the bulk of the films during
deposition. On the other side, the domain growth speed c
is related to the activation energy of domain wall motion,
which is dependent upon the intrinsic magnetic property of the
film, the film structural and magnetic defects, and the extrinsic
factors, such as applied fields, as well. When we go back
to consider the Kolmogorov–Avrami mechanism in the case
where nucleation occurs at time t = 0 and equation (9) is
applied to the slow relaxation, questions associated with the
experimental observations can be clarified. First, the puzzle
around the awkward relationship, α′ = α, does not exist
any more. The domain growth is a function of the applied
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Figure 5. Time dependence of the magnetization relaxation in [Co/Pd]10 multilayer films with a single Co layer thickness of (a) 2 Å,
(b) 3 Å and (c) 4 Å. Data is taken from [34]. The exponent β extracted from the relaxation curves as a function of the Co layer thickness is
shown by (d).

field by equation (24) with v replaced by c while the index γ

(or β) in equation (22) is independent of the field. Second,
the magnetization relaxation can be easily modified in the
exponent β by an Au cap layer to smooth out the surface [32].
The thickness dependence of β observed in a number of thin
film systems can be understood by the addition of defects in
thicker magnetic films. Weir et al’s Monte Carlo simulations
clearly show slower relaxation in the films with higher pinning
site densities [48]. Unfortunately the effect of pinning site
density broken down for c and γ is not given. Last, sharp jumps
in the relaxation curve are observed in some thin films [35, 38],
indicating the magnetization overcomes some major pinning
sites in the reversal process.

We notice in our data fitting that the relaxation becomes
slower than expected when the magnetization approaches the
opposite direction. This behavior is shown in figure 5 and
is more pronounced for compressed exponential decay. An
explanation is given as follows: the moving front of a domain
is curved or jagged during expansion. Shown in figure 6, non-
reversed magnetic ‘bubbles’ are formed when two domains
coalesce and when a domain passes around a pinning site or
void [49]. The bubbles can be stabilized by the demagnetizing
field generated by the surface magnetic charge against the
applied field. The magnetization relaxation associated with the
bubbles is similar to that described by the droplet and domain
models [18, 19] for spin glasses by thermal flipping of the
bubbles. Therefore, both domain growth and bubble reversal
contribute to the relaxation. The magnetization relaxation can
be clearly seen to cross over from compressed exponential

Figure 6. (a) Side view and (b) top view of a magnetic bubble
formed in the background of reversed magnetization.

decay to stretched exponential decay when domains stop
growing and bubble reversal becomes dominant in the late
phase of the process. Technically it is not as easy to identify
the bubble contribution in data analysis for the case where the
relaxation associated with domain growth is also a stretched
exponential.

4. Summary and conclusions

In summary, the experimentally measured time dependence
of the magnetization processes in magnetic thin films that we
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can find is fitted to the extended exponential function. The
relaxation and reversal processes in thin films associated with
the domain formation and growth described by the general
Kolmogorov–Avrami model can be either the compressed
exponential behavior (β > 1) or the stretched exponential
behavior (0 < β < 1). The Fatuzzo model is not adequate
in understanding the phenomenon. This conclusion is drawn
from the study of the field dependence and the magnetic layer
thickness dependence of the magnetization process.

The magnetization reversal and relaxation in thin films are
directly related to the structural and dynamical properties of the
magnetic domains. These processes are ultimately influenced
by the structural properties such as morphology, dispersivity,
defects, and by the magnetic properties including anisotropies
and exchange coupling. Aside from the nucleation and
domain growth mechanism, thermal flipping of the magnetic
bubbles resulting from domain expansion and coalescence
also contributes to magnetization relaxation and becomes
significant in the late phase of the relaxation. Like the
relaxation process in disordered systems, the magnetization
processes associated with the bubble mechanism can be
characterized by a stretched exponential function.
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